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ABSTRACT 

A generalization of Hopf algebras (quantum groups), and bralded-Hopf  

algebras (braided quan tum groups) in which the  multiplicativity axiom 

for the  counit  is dropped,  is presented.  The generalization overcomes an 

inherent  geometrical  inhomogeneity of s tandard  quan tum groups and 

braided quan tum groups, in the  sense of allowing completely 'pointless '  ob- 

jects.  All bra id- type  equations appear  as a consequence of deeper  axioms. 

Braided counterpar ts  of basic algebraic relations between fundamenta l  en- 

tities of the  s tandard  theory are found. 

1. I n t r o d u c t i o n  

The aim of this study is to present basic elements of a braided theory which 

generalizes standard quantum groups and braided quantum groups in a non- 

trivial and effective way. 

The theory allows the possibility of completely 'pointless' objects and 

includes, besides standard braided quantum groups, various geometrically 

interesting structures which are not braided-Hopf algebras, but which are more 

or less similar to them. 

Let us start with a simple geometrical consideration. According to the classical 

Gelfand-Naimark theorem, there exists a natural correspondence between com- 

pact topological spaces X and commutative unital C*-algebras A. For a given 

X, the algebra A consists of complex-valued continuous functions on X, endowed 

with the standard algebraic operations and the maximum norm. Conversely, if A 

is given then points of X are recovered as characters (non-trivial multiplicative 
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hermitian linear functionals) on A. In terms of this identification, topology of X 

is induced by the *-weak topology of the dual space. 

Furthermore, in differential geometry it is possible to re-express all properties 

of a smooth manifold X in terms of the *-algebra of smooth complex-valued 

functions on X. A similar situation holds in algebraic geometry, where ,4 consists 

of polynomial functions on the algebraic variety X. 

The starting idea of non-commutative differential geometry [3] consists in re- 

placing function algebras by appropriate non-commutative algebras A, but still 

interpreting the elements of ,4 as 'functions' on the qualitatively new 'quantum 

spaces'. In non-commutative geometry, the 'existence' of such 'quantum spaces' 

always appears through .4. In other words, we work directly with the algebra .4, 

and all geometrical concepts and structures are expressed exclusively in terms of 

the algebra .4. This means that formally we define quantum spaces as ordered 

pairs X = (.4, S), where S is the appropriate additional algebraic structure on .4, 

corresponding in the classical (commutative) case to the appropriate geometrical 

structure on tile classical underlying space X. 

However, if .4 is non-commutative, then the corresponding quantum space X 

cannot be re-interpreted in classical terms as a structuralized collection of points. 

On the other hand, it is important to notice that the concept of a classical 

point is easily incorporable in the non-commutative context. In analogy with the 

classical geometry, it is natural to define points of X as characters of the algebra 

.4, assuming that .4 is equipped with a *-structure (if .4 is not equipped with 

a *-structure we can simply consider all multiplicative functionals, in analogy 

with complex algebraic geometry). Generally, the space X may be 'completely 

quantum'--without  points at all. 

A particularly important class of quantum spaces is given by quantum groups. 

Geometrically, quantum groups are quantum spaces endowed with a group struc- 

ture. Let us consider a quantum group G = (.4, S). By definition, this means 

that  S = (r e, ~) is a Hopf algebra [1] structure on the algebra .4, specified by 

the coproduct r .4 ~ .4 | .4, the counit e: .4 --, C and the antipode ~: .4 ~ .4 

map (we follow the notation of [7]). The three maps should be mutually related 

in the following way. 

Firstly, the maps r and e determine a counital coalgebra structure on .4; in 

other words 

(id | r162 = (r | id)r (id | e)r = (e | id)r = id. 
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Secondly, we have the antipode axiom 

m(g | id)r = m(id | ~)r = le, 

where m: ,4 | ,4 --~ ,4 is the multiplication in ,4 and 1 C ,4 is the unit element. 

Finally, the map r should be multiplicative, in the sense that 

r = r162 

for each a, b E ,4. In the above relation, ,4 | ,4 is understood as an algebra, in a 

natural manner. 

As a consequence of the mentioned properties, it turns out that  the antipode 

is an anti(co)multiplicative map. The multiplicativity of the counit is another 

important consequence. Further, if ,4 is equipped with a *-structure and if the 

coproduct is such that  r  = (* | *)r then the composition , a  is involutive and 

the counit is hermitian. 

In particular, the space G always possesses at least one point, corresponding 

to the counit map (the neutral element). The quantum group structure on G 

induces, in a natural manner, a group structure on the set Gd of all classical 

points of G, such that  Gd is geometrically interpretable as a 'subgroup' of G. 

Explicitly, the product and the inverse are given by 

gh-- (g | h)r g-1 = ga. 

In this sense, quantum groups are 'inhomogeneous' objects. This inhomogene- 

ity explicitly shows up in certain geometrical constructions [4]. On the other 

hand, it is natural to expect that  in noncommutative geometry quantum spaces 

with a group structure play a similar role as Lie groups in classical differential 

geometry. As such, they should be particularly regular geometrical objects and 

not forced to have this 'inhomogeneity' in which part is classical and part is 

purely quantum. 

Such thinking naturally leads to the idea of generalizing the notion of a group 

structure on a noncommutative space, in order to include objects of a more 

elaborate geometrical nature. 

There has already been introduced in [6] one generalization of quantum groups, 

in the framework of braided categories. In this generalization, the standard 

transposition (figuring in the product in A | A) is replaced by the appropriate 
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braid operator a: A |  --* .4|  so that  all group entities are undersandable as 

morphisms in the braided category generated by ,4 and a. Such a generalization 

has proven useful for various applications in non-commutative geometry, however 

it does not address the above inhomogeneity question because the counit map is 

always multiplicative. 

In this paper, we further generalize this concept of a braided-Hopf algebra (by 

not demanding that  the counit is multiplicative) replacing the standard axiom of 

the a-functoriality of the coproduct r by a more general octagonal diagram. This 

introduces the possibility of the existence of 'completely pointless' structures (in 

particular, in this case the counit is not multiplicative). Moreover, we shall not 

demand directly that a obeys the braid equation, though this will be derived as 

a consequence of the initial axioms. 

The paper is organized as follows. The next section is devoted to the defini- 

tion of braided quantum groups. In Section 3 the most important interrelations 

between all relevant maps will be investigated. In particular, we shall see that  

besides the flip-over operator a, another braid operator T: A | `4 --* A | .4 

naturally enters the game. This operator is expressible via e, r and a. Two 

braid operators ~ and T will play a fundamental role in the whole analysis. In 

particular, it will be shown that  a and ~- are mutually compatible in a 'braided 

sense'. 

The standard theory of braided quantum groups [6] is recovered when a -- T. 

Interestingly, this is further equivalent to the multiplicativity of the counit map. 

A large class of examples of 'completely pointless' braided quantum groups is 

given by braided Clifford algebras [5] associated to involutive braidings. This 

includes classical Clifford and Weyl algebras. Another class of interesting exam- 

ples is given by quantum tori [3]. Endowed with appropriate group structures 

[2], quantum tori can be viewed as braided quantum groups, in the sense of the 

formalism presented in this paper. 

Finally, the Appendix is devoted to the main properties of systems of braid 

operators, mutually compatible in a 'braided sense'. The motivation for this 

comes from the already mentioned braided compatibility between a and r .  In 

particular, it will be shown that  a and r can be naturally included in a (generally 

infinite) 'braid system' expressing concisely all twisting properties. 
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2. Def in i t ion  of  b r a i d e d  q u a n t u m  groups  

Let .4 be a complex associative algebra, with the product m: .4 | ,4 ~ .4 and 

the unit element 1 E `4. Let us assume that  `4 is endowed with a coassociative 

coalgebra structure, specified by the coproduct r .4 -~ A @ .4 and the counit 

e: `4 ~ C. Finally, let us assume that bijective linear maps ~: .4 ~ .4 and 

a: .4 | ,4 ~ A | .4 are given such that the following equalities hold: 

(1) 
(2) 
(S) 
(4) 

a(m @ id) = (id | m)(a @ id)(id | a), 

a(id | m) = (m | id)(id | a)(a | id), 

Cm = (m @ m)(id | er @ id)(r | r 

(a @ id2)(id @ r | id)(a -1 | id)(id | r = 

(id 2 @ a)(id | r @ id) (id | a-1)( r  | id), 

together with the antipode axiom 

(s) l e - -  m(id |  ~)r = m(~@id)r  

Definition 1: Every pair G = (.4, {r e, n, a}) satisfying the above requirements 

is called a b r a i d e d  q u a n t u m  group.  

The map a is interpretable as the 'twisting operator'. In the standard theory, a 

reduces to the ordinary transposition. Identities (1)-(4) express mutual compat- 

ibility between maps r m and a. It is important to mention that  the asymmetry 

between (1)-(2) and (4) implies that the theory is not 'selfdual'. However, if we 

replace (4) with 'dual' counterparts of (1)-(2) then the theory reduces to braided 

quantum groups of [6] (and, in particular, becomes selfdual). 

The space .4 @ .4 is an .4-bimodule, in a natural manner. With the help of a, 

a natural product can be defined on .4 @ .4 by requiring 

(6) (a | b)(c @ d) = aa(b @ c)d. 

Identities (1)-(2) ensure that this defines an associative algebra structure on 

A @ ̀ 4, such that  1 | 1 is the unit element. In particular, 

(7) a(1 | ( ) )  = ( )  @ 1, o'(() @ 1) = 1 @ (). 

In the following, it will be assumed that  A | A is endowed with this  algebra 

structure. Equality (3) then says that  r is multiplicative. 
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Identity (4) expresses the coassociativity of the map (id | c~ -1 @ id)(r @ r 

The 'inverse' identity 

(id 2 | a)(id | r | id)(a N id)(id | r 
(8) 

= (a  | id2) (id N r | id) (id N a) ( r  | id) 

holds, too. It expresses the coassociativity of (id | a N id) (r N r 

3. E l e m e n t a r y  a lgebra ic  p r o p e r t i e s  

Let G = (A, {r e, ~, a}) be a braided quantum group. As in the standard theory, 

the antipode is uniquely determined by (5). The flip-over operator a is expressible 

through r m and ~ in the following way: 

(9) a = (m | m)(~ | Cm | ~)(r | r 

as directly follows from (3) and (5). 

It is easy to see that 

(10) r = 1 @ 1. 

Indeed, r is the unity in the subalgebra r c_ A| as follows from (3). On 

the other hand, A | A is generated by r as a left (right) A-module. Hence, 

r is the unity of A @ A. From (10) we obtain 

(11) ~(1) ---- 1, 

(12) a(1) = 1. 

In further computations the result of an (n-1)-fold comultiplication of an element 

a E A will be symbolically denoted by a (1) @ . . .  | a ('~). Clearly, this element 

of A is independent of ways in which the corresponding comultiplications are 

performed. 

LEMMA 1 : The following identities hold: 

(13) (e | id) = (id | em)(a | id)(id | r 

(14) (id | e) -- (em @ id)(id | a ) ( r  | id). 

Proof." According to (3), 

an (1) | b (2) -- (~ | id)(m | m)(id | a | id)(a 0) | a (2) | b (1) | b (2)) | b (3), 
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for each a, b E A. Acting by m(id@ n) on this equality, and using (5), we obtain 

ae(b) = (e | id)(a(1)cr(a (2) | b)). 

Similarly, acting by m(n @ id) on the identity 

a (~) @ a(2)b -- a (~) @ (id | e)(m | m)(id | a @ id)(a (2) | a (3) | b (~) | b (2)) 

we obtain 
c(a)b -- (id | e)(a(a | b(1))b(2)). | 

A 'secondary' flip-over operator ~- will now be introduced in the game. From 

(8) we obtain 

(15) (id 2 @ e)(id @ a -1 ) (6  @ id) = (e | id2)(a -1 @ id)(id | 6). 

Let T: ,4 @ A --* A | A be a linear map defined by 

(16) r = (id 2 | e)(id | a -1 ) (6  @ id)a = (c @ id2)(a -1 | id)(id @ r 

LEMMA 2: The map r is bijective and 

(17) T - l a  = (id 2 | c)(id | a ) ( r174  id) = (~ | id2)(a | id)(id | 6). 

Proo~ The second equality in (17) follows from (4). Let r ' a  be the map given 

by the second term in (17). A direct computation gives 

~-T'~r = (e | id 2 | e)(a -1 | id2)(id | r | id)(a @ id)(id | a ) (8  | id) 

= (e | id 2 | e)(a-1 | id2)(id | r | id)(a | ~ | id)(id | r | id) (id | a) 

(6 | id) 

= (~ | id 2 @ e | e)(a -1 | id | a)(id | 6 | id2)(id | r @ id)(a | id) 

(id | 6) 

= (~ | id 2 | e | ~)(id 3 | a)(id 2 | 6 | id)( id2 | a - l ) (  id | r | id)(id | a) 

(6 | id) 

= (id 2 | ~ | c)(id 2 @ a)(id | r | id) (id | a -1 ) (6  | id)a 

= (id 2 | e | c)(a | i J )  (id | r | id)( a -1  | id)(id | r  

~ O ' .  
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Similarly, interchanging a and a -1 in the above computations we conclude 

that T ~ is a left inverse for T. Hence, r is bijective and T -1 = r ~. | 

Let us write down some important algebraic relations including the map r.  

Initially, let us observe that 

(18) (e | id)T = id | e, (id @ e)r = e @ id, 

(19) 7(1@ ()) = () | 1, T(() @ 1) = 1 @ (). 

This is a direct consequence of the definition of r, and property (7). Further, 

coassociativity of r and relations (16)-(17) imply 

(20) 

(21) 

(22) 
(23) 

(r | id )T- la  = (id | T - l a ) ( r  | id), 

(id | r  " = (T--10" | id) (id | r 

(r | id)ra  -1 = (id | r a - 1 ) ( r  | id), 

(id | r  -1  -- ('r(r -1 | id)(id | r 

In other words, maps ar -1 and ( r - l T  are  automorphisms of the A-bicomodule 

A | A (with the left and the right A-comodule structures given by r | id and 

id | 6 respectively). Moreover, the following commutation relations hold: 

(24) (aT -1 | id)(id | aT -1) = (id | aT-1)(ar -1 | id), 

(25) (aT -1 | id) (id | a - l r )  = (id | a- lT ) (a r  -1 @ id), 

(26) (a-- lr  | id) (id | aT  -1 )  : (id @ ffr--1)(0"--lT | id), 

(27) ( a - i t  | id)(id | a- i v )  = (id | a - l r ) ( a - l T  | id). 

The above equalities follow from (20)-(23) and (16)-(17). As a direct conse- 

quence of Lemma 1 and (17) we find 

(28) em = (e | e)a-lT. 

This generalizes the standard multiplicativity law for the counit. 

Identities (4) and (8) can be rewritten in a simpler 'pentagonal form', including 

the operator T and explicitly expressing twisting proPerties of the coproduct map. 
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PROPOSITION 3: 

(29) 

(30) 

(31) 
(32) 

Proof: 

GENERALIZED BRAIDED QUANTUM GROUPS 

The following identities hold: 

(r | id)a = (id | T)(~ | id)(id | r 

(id | r  = (v | id)(id | a ) ( r  | id), 

(r | id)a = (id | 6r)(T | id)(id | r 

(id | r  = (a | id)(id | r ) ( r  | id). 

Using (4) and (17) we obtain 

(e | id3) (or | id2)(id @ r @ id)(cr -1 @ id) (id | r = (r  -1 | id)(id @ r 

= (e | id @ ~)(id | r | id)(id @ O'--1)(r | id) = (id | a ) ( r  @ id)a - i .  

Similarly, 

(id 3 | e)(id 2 | a)(id | r | id)(id | a -1 ) ( r  | id) = (id | T--1)(r | id) 

= (a | id | e)(id | r | id)(a -1 | id)(id | r = (a | id)(id | r  -1. 

337 

PROPOSITION 4: We have 

(33) 

(34) 

(33) 
(36) 

Proof: 

(r | id)r  = (id | r ) ( r  | id)(id @ r 

(id | r  = (r  | id)(id | r ) ( r  | id), 

r(m | id) = (id | ~')(r | id)(id @ m), 

r ( id  | m) = (r  | id)(id | r)(m | id). 

Direct transformations give 

(id | 7)(7 @ id)(id | r = (id @ r a - 1 ) ( r  | id)a = (r | id)r. 

Similarly, 

(3- | id)(id @ 3-)(r @ id) = (Ta -1 | id)(id | r  = (id @ r 

Hence (29)-(30) hold. Starting from equalities (8) and (16) and applying the 

same computat ion we obtain (31)-(32). | 

In the next proposition 'pentagonal'  twisting relations including only T are 

collected. 
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Applying (16), (31) and (1) we obtain 

(id | m)(7 | id)(id | T) = (id | m | e)(T | a -1)( id  | r | id) (id | a) 

= (id | m | e)(id 2 | a-1)( id | a -1 | id)(r | id 2) 

(a @ id)(id @ a) 

= (id 2 | e)(id | a -1 ) ( r  | m)(a | id)(id | a) 

= (id 2 @ e)(id | O'--1)(r | id)a(m | id) 

= T(m @ id). 

Similarly, 

(m | id)(id @ T)(T | id) = (e | m | id)(a -1 | T)(id | r @ id)(a | id) 

= (e | m | id)(a -1 | id2)(id @ a -1 @ id)(id 2 | r 

(id | a) (a | id) 

= (e | id2)(a -1 | id)(m | r | a)(a | id) 

= r(id | m). | 

We pass to the study of algebraic relations including the antipode map. In 

the standard theory, the antipode is an anti(co)multiplicative map. The next 

proposition gives a braided counterpart of this property. 

PROPOSITION 5: We have 

(37) 

(38) 

Proof: 

r = a(~ | ~)r 

am = m(,~ | n ) ra - l ra - l r .  

Let us start from the identity 

n(a(1))a (2) | a (3) = 1 @ a. 

Acting by r | r on both sides, and using (3) and (10), we obtain 

(r (a(2) |  (3)) |  (4) |  (5) = 1 | 1 |  (1) |  (2). 

After the action of (id | m | id)(id 2 | ,~ | id) on both sides the above equality 

becomes 
(r (a (2) | 1) | a (3) = 1 | ~(a (D) | a (2). 
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Hence 

(r (a(2)~(a (3)) @ 1) = (1 | ~(a(1)))(~(a (2)) | 1). 

Applying (5)-(6) we obtain 

r = a(~(a (1)) | ~(a(2))). 

This proves (37). To prove (38), let us start from m(~ | m)(r  | id) = e | id, act 

by it on m | m, and apply (3) and (28). We find 

.~(~ v m)(.~ |  | m)(id | o | id3)(r | r | id 2) = (~ | ~)o-1~ | m. 

Acting by this equality on (id 2 @~|162174 and simplifying the expression 

we find 

m(t~m | m)(id | a | id)(r @ id 2) = (e | m)(id @ ~ | id) (a- lT @ id). 

Acting by this on (id 2 | ~)(id @ 0)(r  | id) we obtain 

m(nm | m)(id @ 0 | n)(id 2 | a)(id | r | id)(r @ id) 

= (e @ m)(id @ ~ | n)(a-IT | id)(id | a ) ( r  | id). 

After simple twisting transformations the left-hand side of the above equality 

becomes 

m(~m @ m)(id 3 | ~)(id 2 | r | 0r-lo)(r | id) 

= (~m | e)(id | 0T-10)(r | id) = ~mT--1oT--lo ". 

The right-hand side of the mentioned equality reduces to 

m(e | n | t~)(o -1 | id)(id | r  = m(~ | n)T. 

Consequently, (38) holds. | 

Twisting properties of the antipode will be now analyzed. But first, a technical 

lemma. 
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LEMMA 6: 

(39) 

(40) 

M. DURDEVIC 

We have 

[a(a | id)v-laT-l(a | b(1))] b (2) = a | le(b), 

a <1) [a(id @ N)T--lffT--i(a (2) | b)] ---- e(a)l | b, 

Isr. J. Math. 

for each a, b E .4. 

Proo~ We compute 

(id | m)(a | id)(n @ id2)(7-137 -1 | id) (id @ r 

=( id  | m)(a | id)(a @ id2)(T -1 | id)(id | r -1 

=( id  @ m)(a | id)(a @ a)( r  | id)T -1 = a(m @ id)(~ | id2)(r | id)r  -1 

= a ( l e  @ id)T -1 

=id  | le. 

Similarly, 

(m | id)(id | a)(id 2 @ a)(id | T-lav-1)(r @ id) 

= ( m  | id) (id | a)(id 2 | ~)(id | r - i ) ( r  | id)aT -1 

=a( id  @ m)(id | ~)(id | r  -1 = a(id @ le)T - i  = le | id. | 

PROPOSITION 7: The following identities hold: 

(41) a(~ | id) = (id | a ) r a - l r ,  

(42) r o d  | ~) = (~ | id)T, 

(43) r (~ | id) = (id | ~)T, 

(44) a(id | ~) = (~ | id)Ta-17. 

Proof: Applying Lemma 6 and property (5) we obtain 

a(~ | id)r- laT-l(a  | b) = [a(~ |  | b(1))]b(2)~(b (3)) = a | ~:(b). 

Similarly, 

(id | g)T--l(7"/'--l(a | b) ---- ~;(a(1))a (2) [(Y(~; | id)r-aar-l(a (3) | b)] = to(a) | b. 

This shows (41) and (44). Using properties (16), (41), (44), (22)-(23) and (33)- 

(34) we obtain 

r o d  | a) = (e | id2)(a -1 | id)(id | r  | a) 

= (e | tr | id)(r-lar -1 | id)(id | r 

= (e | ~ | id)(r  -1 | id)(id | r  = (~ | id)r. 
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Similarly, 

r (~  | id) = (id 2 | e)(id | a -1 ) ( r  | id)a(~ | id) 

= (id | ~ | e)(id | 7-- laT-1) (r @ id )Ta - l r  

= (id| ~ | e)(id| T-1)(r  = (id | ~)T. | 

As a direct consequence of the previous proposition we find 

(45) (,~ | ,~)7 : 7(,r | ,r 

(46) (~ | n)a = a(n  | ~). 

To end this section, we shall prove that a and 7 satisfy a system of braid 

equations. 

PROPOSITION 8: The following identities hold: 

(47) (a | id)(id | a)(a @ id) = (id @ a) (a  | id)(id | a), 

(48) (7 @ id) (id | a)(a | id) = (id | a)(a @ id)(id @ T), 

(49) (a | id)(id @ 7)(a | id) = (id | a)(T | id)(id @ a), 

(50) (a @ id)(id @ a)(T | id) = (id | T)(a | id)(id | a), 

(51) (7 | id)(id | 7)(a @ id) = (id | a)(7 @ id)(id | 7), 

(52) (7 | id) (id | a)(T @ id) = (id | T)(a | id)(id | 7), 

(53), (a | id)(id | 7)(7 | id) = (id | r)(T | id)(id | a), 

(54) (7 | id)(id | 7)(T | id) = (id | T)(T | id)(id | T). 

Proof: We shall first prove (48)-(51) and (53), secondly (54), thirdly (52) and 

finally (47). A direct computation gives 

(T\@ id)(id @ a) (a  | id) 

= (7 | id) (id @ ~r)(m @ m @ id)(~ | Cm | tr | id)(6 | r | id) 

-- A(T | id3) (id | T | id2)(id 2 | a | id) (id 3 | a)(~ | Cm | ~ | id)(r | r | id) 

= A(id @ ~ |  ~)(7 | id2)(id | a | id) (id @ m | r a -17 ) ( r  @ r | id) 

= (id | rn@ m)(id @ ~ | Cm | ~)(7 | idS)(id | a | id2)(r | id | r | T) 

= (id | m | m)(id @ ~ | Cm | ~)(id | r | r  | id)(id @ 7) 

= (id | a ) (~ | id)(id | T), where A = id | m | m. 
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Similarly, 
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(id | T)(a | id)(id | a) 

---- (id | T)(a | id) (id | m | m)(id | ~ | Cm | n)(id | r | r 

= B(id 3 | T)(id 2 | T | id)(id | a | id2) (a | id3) (id | ~ | Cm | n)(id | r | r 

= B(n | r | ~ | id) (id 2 | T)(id | a | id) (T0"-IT | m | id) (id | r | r 

= (m | m | id)(n | Cm | n | id)(id 3 G T)(id 2 | a | id)(r | id | r  | id) 

= ( m | 1 7 4 1 7 4 1 6 2 1 7 4 1 7 4 1 6 2 1 7 4 1 6 2 1 7 4 1 7 4 1 7 4  

= (a | id)(id | a)(~ | id), where B = m | m | id. 

Essentially the same transformations lead to identities (49), (51) and (53). Let 

us prove (54). We have 

(id @ 7)(T | id)(id @ T) =(id @ T | e)(T @ a-1)( id @ r @ id) (id | a) 

=(id 2 | e @ id ) ( i J  | T)(id @ ~- | id)(T | a -1) 

(id | r | id)(id | a) 

=(id 2 | e | id)(id | a -1 | id)(id 2 | T)(id | T | id) 

(T | id2)(id | r | id) (id | a) 

=(id 2 | e | id)(id | a -1 | id)(r | T)(T | id)(id .Q a) 

: ( r a  -1 | id)(id | T)(~- | id)(id | a) 

: ( v  | id)(id | r)(T | id). 

Identities (25), (48), (51) and (54)imply 

(id | T)(a | id)(id | T) 

=(id | r ) ( a r  -1 | id)(r | id) (id | T) 

=(id | a)(aT -1 | id)(id | a - l r ) ( r  | id)(id | T) 

=(id | a)(aT -1 | id)(id | a - 1 ) ( r  | id) (id | r ) ( r  | id) 

=(id | a)(a | id) (id | r ) ( a - l T  | id) 

=(T | id) (id | a ) ( r  | id). 
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Finally (24), (48), (50) and (52)imply 

(id | a)(a | id)(id | ~) 

=(id | aT-1)(c r | id)(id | a)(T @ id) 

=(id | aT--1)(O'T -1 | id)(id | 7)(a | id) (id | ~-) 

=(aT -1 @ id) (id | a)(a @ id)(id | ~-) 

= (a  | id)(id | ~r)(a | id). | 
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Appendix A. Braid systems 

The presence of two different braid operators a and T in the twisting properties of 

r and ~ implies that,  in contrast to the standard formalism [6], the theory is not 

includable in the conceptual framework of braided categories. In this appendix 

we shall prove that cr and ~- can be included in a generally infinite system of braid 

operators indexed by integers, expressing all twisting properties in a concise and 

elegant way. Finally, we give a characterization of the standard theory, in terms 

of the multiplicativity of the counit map. 

Let us consider a complex associative algebra ,4 with the unit element 1 E ,4 

and the product m: ,4 | ,4 -* ,4. 

Definition 2: A braid system over ,4 is a collection 9 v of bijective linear maps 

acting in ,4 | ,4 and satisfying 

(55) (a | id)(id | fl)(7 | id) = (id | ?)(fl | id)(id | a), 

(56) a(id | m) = (m @ id)(id | a)(a @ id), 

(57) a(m @ id) = (id @ m)(a @ id) (id | a), 

for each a, fl, 7 E ~'. 

Definition 3: A braid system 9 r is called comple t e  iff it is closed under the 

operation (a, fl, ?) ~-~ aft-17. 

Let 5 r be a braid system over A. Then 

a(1 | ( ) ) =  ( )@1,  a ( ( )  | 1 ) = 1 @ ( )  

for each a e ~v, as follows from (56)-(57). Further, every a �9 5 r naturally 

determines an associative algebra structure on `4 | ,4, with the unit element 

1 | 1. The corresponding product is given by (m | m)(id | a | id). 
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We are going to prove that there exists the minimal complete braid system 

~-* which extends .T. Starting from the system ~" we can inductively construct 

an increasing chain of braid systems ~'~, where n > 0 and 9Co = ~', while ~',~+1 

consists of maps of the form/5 = a f l - l~ ,  where a, fl, ~, E ~'n. The fact that all 

) r  are braid systems easily follows by induction, applying the definition of braid 

systems and the identity 

(58) (O~3 -1 | id)(id | .),(~-1) ---- (id | ")'8-1) (o/f1-1 | id) 

(which holds in an arbitrary braid system). 

Let ~-* be the union of systems ~',~. By construction, .T* is a complete braid 

system. Moreover, ~'* is the minimal braid system containing ~-. 

Let G = (A, {r e, ~, a}) be a braided quantum group. According to (1)-(2), 

(35)-(36) and Proposition 8 operators {a, r} form a braid system over the algebra 

A. The corresponding completion ~" = {a, v}* consists of maps an: A | A -* 

.4 | .4 of the form 

(59) 

where n E Z. 

PROPOSITION 9: 

(60 )  

(61) 

(62 )  

(63 )  

Proof'. 

an  = = 

The following identities hold: 

(O | id)gn+k ---- (id | gk)(gn | id)(id | r 

an(id | ~) = (~ | id)a_n, 

a,~(~ | id) = (id @ ~)a-n,  

(id | r = (ak @ id)(id | a~)(r | id). 

Applying Proposition 7 and (59) we obtain 

an(id | ~) = (aT-1)n- la ( id  | ~) = (~ | id ) (ra-1)n- l ra- l r  

= (~ | id)(ar-1)-n- la  = (~ | id)a_n. 

Similarly, 

a~(~ N id) = (id | ~)(Ta-1)'~-lra-lr = (id | ~)a-n.  

Equalities (60) and (63) follow directly from (20)-(23) and (29)-(30). Indeed, 

(ak | id)(id | a~)(r | id) = ((O'r-1)kr | id) (id | Vr(T-lcr) n - l )  (r | id) 

((ar-1)kT | id) (id | a ) ( r  | i d ) ( r - l a )  n-1 

= ( ( a t - l )  k @ id) (id | r  ~-1 

= (id @ r = (id | r 
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Similarly, 

(id | ~rn)(ak | id)(id | r = (id | (aT-1)nv)(a(r- ia)  k-i  | id) (id | r 

= (r | id)(aT-i) '~+~-la = (r | id)an+k. | 

As we shall now see, an arbitrary an E ~- is interpretable as the flip-over 

operator corresponding to a modified braided quantum group structure. 

For each n E Z, let mn: ,4 | A --* .4 and ~n: A --~ A be the maps given by 

(64) mn = ma~la,  

(65) nn --- (e @ ~)a~iar = (n @ e)a~iar 

(the second equality in (65) will be justified in the proof of the proposition below). 

It is easy to see that  each mn, interpreted as a product, determines a structure 

of an associative algebra on the space .4. Indeed, 

ran(ran | id) = m a ~ l a ( m a : l a  @ id) 

= m a ; i ( i d  | m)(a | id)(id | a) (a;ic~ | id) 

= m(m | id)(id @ a ; i ) ( a ; i a  | id)(id @ a) (a ; la  | id) 

= m(m | id)(id | a~l) (a;  1 | id)(id | a~i)(a | id)(id | a) 

(a | id) 

= m(id @ m)(a;  1 | id)(id @ a~i)(a~ i | id)(id @ a)(a | id) 

(id | a) 

= m(id | m)(a~ i | id) (id @ a~ia)(a | id)(id | a; la )  

= ma~i (m @ id) (id | a)(a | id) (id | a ~ a )  

= ma~ia(id | ma~ia) 

= mn(id | ran). 

For each n E Z, let us denote by An the vector space ,4 endowed with the 

product mn. Evidently, 1 E An is the unit in this algebra, too. 

PROPOSITION 10: The pair Gn = (An,{r is a braided quantum 

group. 

Proof'. We have to check the last three axioms in Definition 1. The compatibility 

condition between r and an follows easily from (60) and (63). Further, a direct 
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computation gives 

Cmn = (m @ m)(id | ~r | id)(r | r  " 

= (m @ m)(id | a a ~ l a  | id)(r | r 

= (m | m)(id | a2-~ @ id)(r | r 

= ( m a ;  1 | m)(id | r | id)(a2 | id)(id | r 

= (ma~lo " | m)(id | a | id)(r | r 

= (ma~la  @ m a : l ) ( i d  | r | id)(id | an+l)(r  | id) 

--- (mn | m~)(id | aN | id)(r | r 

Finally, we have to check that k~ satisfies the antipode axiom. Let us consider 

maps k~: A --* A given by 

k~ = (a | ~ )a ; l a r  k + = (~ | a )a~ la r  

We have 

mn(k~ | id)r = m a ; l a ( e  | ~ | i d ) ( v a ; l a  | id)(r | id)r 

= m(e | a | id)(id | a - ~ a - 1 ) ( a l - n  | id)(id | r162 

= m(e | ~ | id)(id | a - 1 ) ( r  | id)a_nr 

= m(e | ~ | id)(r | id)(id @ r162 

= m(~ | id)r = le. 

Similarly, it follows that mn (id| a+)r  = le. To complete the proof, let us observe 

that 

+ (e | n+)r m,,(m,~ | id)(~;  | id | ~+)(r | id)r 

= m,~(id @ mn)(n~ @ id @ a+)(id @ r162 = mn(n'~ | le)r = k~. 

The map k,~ = k~ is bijective. Its inverse is given by 

n~l~ = (e | i d ) a - l a n r  -- (id | c)a- lanr  | 

Isr. J. Math. 

From the point of view of this analysis, the group Go is particularly interest- 

ing. For example, left-covariant first-order differential structures over G (braided 

counterparts of structures considered in [8]) are in a natural bijection with cer- 

tain right Ao-ideals T~ C_ ker(e). Informally speaking, Go is interpretable as a 
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'maximal braided simplification' of G, with the same coalgebra structure. It is a 

standard braided-Hopf algebra. 

If G is a standard braided-Hopf algebra then the counit is multiplicative. 

Interestingly, the converse is also true. 

LEMMA 11: The following properties are equivalent: 

(66) 

(67) 

(68) 

(69) 

P r o o f  

em = e@ e, 

(e | id)a = id | c, 

(id @ e)a = e | id, 

O ' ~ T .  

Equality (69) implies (66), according to (28). If (66) holds then (13)-(14) 

imply (67)-(68). Finally, if (67) (or (68)) holds, (16) implies that two flip-over 

operators coincide. | 

In other words, the above-listed conditions characterize the theory of [6]. 

Indeed, ~r = ~- implies that the whole system ~" reduces to a single braiding 

a, and all maps appearing in the game are understandable as morphisms in a 

braided category generated by ,4 and a. 

In the standard theory [6] all computations can be performed diagramatically, 

drawing braid and tangle diagrams. A similar situation holds here, in the general 

multi-braided framework. The only difference is that diagrams should be appro- 

priately refined, by identifying each separate braiding (labeling them by integers) 

and properly expressing all the derived algebraic properties. 
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